
Noname manuscript No.
(will be inserted by the editor)

Dependent Types for Pragmatics

Darryl McAdams · Jonathan Sterling

Received: date / Accepted: date

Abstract This paper proposes the use of dependent types for pragmatic phe-
nomena such as pronoun binding and presupposition resolution as a type-
theoretic alternative to formalisms such as Discourse Representation Theory
and Dynamic Semantics.

Keywords Semantics · Pragmatics · Pronouns · Presuppositions · Type
Theory · Dependent Types

1 Introduction

In this paper, we discuss the possible use of dependent types as a metatheory
for semantics which gives rise to very natural solutions to problems in prag-
matics such as pronominal reference and presuppositions. The approach also
gives a simple account of donkey anaphora without resorting to exotic scope
extension of the sort used in Discourse Representation Theory and Dynamic
Semantics, thanks to the proof-relevant nature of type theory.

Section 2 briefly covers the differences between simple types and depen-
dent types for those unfamiliar. Section 3 discusses the sorts of meanings that
would be possible under dependent types, together with an extension to the

Darryl McAdams
...
...
...
...
...

Jonathan Sterling
...
...
...
...

2 Darryl McAdams, Jonathan Sterling

type theory that makes it possible to assign pronouns a meaning that is free
of syntactic indices. Section 4 wraps up with a discussion of further exten-
sions that could be made to the framework, on both theoretical and empirical
grounds.

2 Dependent Types

Dependent types are a type theoretic approach to first-order and higher-order
logic. In line with standard type theoretic approaches to logic, dependent type
theory justifies its introduction and elimination rules by demonstrating local
soundness and completeness in the form of β reduction and η expansion rules.

To make the explanation of the two main dependent connectives simpler,
consider their non-dependent counterparts. A typical type system will have
pair types (e.g. A×B) and function types (e.g. A→ B). The formation, intro-
duction, and elimination rules for the × connective are given by the following
inference rules:

Γ ` A type Γ ` B type
×F

Γ ` A×B type

Γ `M : A Γ ` N : B ×I
Γ ` 〈M,N〉 : A×B

Γ ` P : A×B ×E1
Γ ` fst(P) : A

Γ ` P : A×B ×E2
Γ ` snd(P) : A

These are justified by the reductions

fst(〈M,N〉)⇒β M snd(〈M,N〉)⇒β N

which witnesses local soundness, and the expansion

P ⇒η 〈fst(P), snd(P)〉

which witnesses local completeness. Similarly, the introduction and elimination
rules for → are

Γ ` A type Γ ` B type
→F

Γ ` A→ B type

Γ, x : A `M : B
→I

Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A →E
Γ `MN : B

Dependent Types for Pragmatics 3

with reduction and expansion rules

(λx.M)N ⇒β [N/x]M M ⇒η λx.Mx

where [N/x]M stands for the result of substituting N for x in M .
Together, these rules consist of a definition of the simply typed λ calculus

with pairs and functions, usually called λ×,→. The extension to dependent
pairs and functions is relatively straightforward. The judgment A type above,
which is used to specify that something is a type, will be replaced by a typing
judgment of the form A : Set, where Set is the type of types.1 The dependent
pair inference rules are:2

Γ ` A : Set Γ, x : A ` B : Set
×F

Γ ` (x : A)×B : Set

Γ `M : A Γ ` N : [M/x]B
×I

Γ ` 〈M,N〉 : (x : A)×B

Γ ` P : (x : A)×B
×E1

Γ ` fst(P) : A

Γ ` P : (x : A)×B
×E2

Γ ` snd(P) : [fst(P)/x]B

The formation rule modifies the non-dependent case by letting the type
B be defined in terms of a variable x : A, that will refer ultimately to the
first element of a pair of the type (x : A) × B. An element of (x : A) × B
is just a pair as usual, but where the second element N has the type gotten
from specifying x to be M (the first element) in B. The elimination rules are
correspondingly augmented to reflect the dependency of the intro.

As an example of such a pair, imagine we extended our system to have a
type of natural numbers N, with inhabitants given by numerals(i.e. 0 : N, 1 : N,
27 : N, etc.), and a predicate Prime : N→ Set, such that Prime n is inhabited
by ? if and only if n is prime. That is to say, we expect it to hold that ? : Prime 2
and ? : Prime 7 but not ? : Prime 4. Then the type (n : N) × Prime n is
the dependent type analog to the proposition ∃x : N.Prime n. Inhabitants of
this proposition, such as the pairs 〈2, ?〉 and 〈7, ?〉 are simple witnesses to the
existence, paired with proofs that the proposition holds of the witness. As such,
it cannot hold that 〈4, ?〉 inhabits the type (n : N)× Prime n.

The β and η rules for dependent pairs are identity to the reduction rules
for non-dependent pairs. Just in case x is not free in B, we can take the syntax
A×B to be syntactic sugar for (x : A)×B.

Analogous to the modifications to pairs, the generalization of functions to
the dependent case is given via the following rules:

1 This will lead to inconsistency if Set : Set, due to Girard’s Paradox (Hurkens 1995), but
standard techniques for avoiding this can be applied, such as universe hierarchies (Martin-
Löf 1984). For simplicity of presentation, we embrace temporary inconsistency.

2 This paper opts to use the notation (x : A) × B and (x : A) → B in place of the more
common Σx : A.B and Πx : A.B, respectively, in order to emphasize that these are merely
dependent versions of pairs and functions.

4 Darryl McAdams, Jonathan Sterling

Γ ` A : Set Γ, x : A ` B : Set
→F

Γ ` (x : A)→ B : Set

Γ, x : A `M : B
→I

Γ ` λx.M : (x : A)→ B

Γ `M : (x : A)→ B Γ ` N : B
→E

Γ `MN : [N/x]B

Just as dependent pairs were pairs where the type of the second element was
dependent on the value of the first element, a dependent function is a function
where the return type is dependent on the argument value. Continuing with the
previous example, the type (n : N)→ Prime n corresponds to the proposition
∀n : N.Prime n, which would be proved by a function sending each natural
number n to a proof that n is prime. Of course no such function exists, so this
type should be uninhabited.

As with pairs, the β and η rules remain unchanged, and we use the notation
A→ B as syntactic sugar for (x : A)→ B just in case x is not free in B.

3 Dependent Types for Pragmatics

In a standard Dynamic Semantics approach to pronouns, the discourse “A
man walked in. He sat down.” would be represented by a proposition such as

(∃x : E.Man x ∧WalkedIn x) ∧ SatDown x

In standard presentations of semantics, of course, this would be a malformed
proposition, because x is out of scope in the right conjunct, however in Dy-
namic Semantics, the scope of existentials is extended to make this a well-
formed proposition. Using a dependently typed formalism, such a sentence
would have the semantics

(p : (x : E)×Man x×WalkedIn x)× SatDown (fst(p))

Rather than modifying the behavior of existentials, which in dependent types
become pairs, we instead use a dependent pair type in place of the conjunction.
Conjunctions would become pair types regardless, but by using an explicitly
dependent pair, the dependent framework allows the right conjunct to refer
to not only the propositional content of the left conjunct, but also to the
witnesses to the existentially quantified proposition, by way of fst().

The semantics for a, man, walked in, and sat down are, in simplified form,
just direct translations from the usual semantic representations:

JaK : (E→ Set)→ (E→ Set)→ Set

JaK = λP. λQ. (x : E)× P x×Qx

Dependent Types for Pragmatics 5

JmanK : E→ Set

JmanK = Man

Jwalked inK : E→ Set

Jwalked inK = WalkedIn

Jsat downK : E→ Set

Jsat downK = SatDown

The semantics of conjunction (in the form of sentence sequencing) and the
pronoun he will be discussed briefly, however, for now the following definitions
will suffice:

JS1. S2.K : Set

JS1. S2.K = (p : JS1K)× JS2K

JheK : E

JheK = fst(p)

We will need to return to these because they will not work on the face of
it. How, for instance, does he know that it should mean fst(p) and not snd(p)?
Using fst(p) works for these carefully constructed examples, but in general it
evidently will not. This deficiency will be resolved, but only after the shape of
the semantics has been further discussed.

Consider now the discourse “A man walked in. The man (then) sat down.”
The use of the man in the right conjunct, instead of he introduces presupposi-
tional content via the definite determiner. Ideally, the semantics of this should
be nearly identical to those of the previous example (modulo β reduction). By
giving the a dependently typed meaning, we can do this relatively simply:

JtheK : (P : E→ Set)→ (x : E)→ P x→ E

JtheK = λP. λx. λp. x

The first argument to the is simple the predicate, which in this case will be
Man. The second argument is an entity, and the third is an inhabitant of the
type P x, i.e. a proof that P x holds. Therefore we would want

Jthe manK = (λP. λx. λp. x) (Man (fst(p))) (fst(snd(p))) =β fst(p)

The term fst(p) : E is of course the aforementioned man from the left conjunct.
snd(p) is a proof that he is in fact a man, and that he walked in, and so
fst(snd(p)) is the proof that he is a man. The argument fst(p) is, in effect, the
witness to the existence component of the presupposition that the has, and
fst(snd(p)) is the proof that the propositional component of the presupposition
holds.

6 Darryl McAdams, Jonathan Sterling

This definition will again be returned to later, because we have similar
problems as with he, namely, how do we pick the right term for x and for the
proof of P x? But for this example, it suffices that we pick them as shown.

The next two pairs of examples go hand in hand. Consider the classic
donkey anaphora sentences “If a farmer owns a donkey, he beats it.” and
“Every farmer who owns a donkey beats it.” A typical Dynamic Semantics
approach might assign these sentences the meaning

∀x : E.Farmer x ∧ (∃y : E.Donkey y ∧Owns x y)⇒ Beats x y

In the dependently typed setting, we can assign a similar meaning, but
which has a more straightforward connection to the syntax:

(p : (x : E)× Farmer x× (y : E)×Donkey y ×Own x y)

→ Beat (fst(p)) (fst(snd(snd(p))))

For convenience, we can define a subscript notation pi which projects the i-th
element of a (right nested) tuple; now we have:

(p : (x : E)× Farmer x× (y : E)×Donkey y ×Owns x y)→ Beats p1 p3

The lexical entries for the content words and pronouns should be obvious
at this point, but for if, a, and every we can define:

JifK : Set→ Set→ Set

JifK = λP. λQ. (p : P)→ Q

JaK : (E→ Set)→ (E→ Set)→ Set

JaK = λP. λQ. (x : E)× P x×Qx

JeveryK : (E→ Type)→ (E→ Set)→ Set

JeveryK = λP. λQ. (p : (x : E)× P x)→ Q(fst(p))

With these, we can get:

Ja farmer owns a donkeyK
= (x : E)× Farmer x× (y : E)×Donkey y ×Owns x y

Jif a farmer owns a donkeyK
= λQ. (p : (x : E)× Farmer x× (y : E)×Donkey y ×Owns x y)→ Q

Jfarmer who owns a donkeyK
= λx.Farmer x× (y : E)×Donkey y ×Owns x y

Jevery farmer who owns a donkeyK
= λQ. (p : (x : E)× Farmer x× (y : E)×Donkey y ×Owns x y)

→ Qp1

Jbeats itK
= λz.Beats z p3

Jhe beats itK
= Beats p1 p3

Dependent Types for Pragmatics 7

Again, the pronouns need to have the right meanings, which here is just
given as a temporary, just-so solution.

3.1 Terms for Presuppositions

Providing that the pronouns and definite determiners can be assigned the
correct terms, the meanings given above work just as well as a standard DRT
or dynamic meaning, but in a type safe way. But can these meanings in fact
be gotten?

A number of possible solutions exist to do precisely this sort of thing in
the programming language literature. Haskell’s type class constraints (Marlow
2010) and Agda’s instance arguments (Devriese and Piessens 2011) provide
very similar functionality but for somewhat different purposes, so one option
would be to steal those ideas. Unfortunately, doing so would complicate the
theory, which is already complex enough due to dependency. The approach we
will take here involves a new term that binds variables for presupposed parts
of a proposition. Terms and contexts are defined as

Terms M,N,A,B ::= x | Set
| (x : A)→ B | λx.M | MN
| (x : A)×B | 〈M,N〉 | fst(M) | snd(M)
| require x : A in M

Contexts Γ ::= · | Γ, x : A
Signatures Σ ::= · | Σ, x : A

The new term require x : A in M should be understood to mean roughly
“find some x : A in the context and make it available in M .”

Lexical constants (e.g. Man, Own, etc.) are to be contained in a signature
Σ, whereas the context Γ is reserved for local hypotheses. The use of signa-
tures to carry the constants of a theory originates from the Edinburgh Logical
Framework, where individual logics were represented as signatures of con-
stants which represented their syntax, judgments and rule schemes (Harper,
Honsell & Plotkin 1993). Then the basic forms of judgment are as follows:

` Σ sig Σ is a valid signature
`Σ Γ ctx Γ is a valid context

Γ `Σ M : A M has type A

In context validity judgments `Σ Γ ctx, we presuppose ` Σ sig; likewise, in
typing judgments Γ `Σ M : A, we presuppose `Σ Γ ctx. The rules for the
signature and context validity judgments are as expected:

` · sig

` Σ ctx · `Σ A : Set x /∈ Σ

` Σ, x : A sig

8 Darryl McAdams, Jonathan Sterling

`Σ · ctx

`Σ Γ ctx Γ `Σ A : Set x /∈ Γ ∪ Σ

`Σ Γ, x : A ctx

Constants and hypotheses may be projected from signatures and contexts
respectively:

const
Γ `Σ,x:A,Σ′ x : A

hyp
Γ, x : A,Γ′ `Σ x : A

The inference rules for the familiar terms are the usual ones:

Set : Set
Γ `Σ Set : Set

Γ `Σ A : Set Γ, x : A `Σ B : Set
→F

Γ `Σ (x : A)→ B : Set

Γ, x : A `Σ M : B
→I

Γ `Σ λx.M : (x : A)→ B

Γ `Σ M : (x : A)→ B Γ `Σ N : A
→E

Γ `Σ MN : [N/x]B

Γ `Σ A : Set Γ, x : A `Σ B : Set
×F

Γ `Σ (x : A)×B : Set

Γ `Σ M : A Γ `Σ N : [M/x]B
×I

Γ `Σ 〈M,N〉 : (x : A)×B

Γ `Σ P : (x : A)×B
×E1

Γ `Σ fst(P) : A

Γ `Σ P : (x : A)×B
×E2

Γ `Σ snd(P) : [fst(P)/x]B

The only inference rule which is new deals with presuppositions:

Γ `Σ M : A Γ `Σ [M/x]N : B x /∈ FV (B)
require

Γ `Σ require x : A in N : B

Dependent Types for Pragmatics 9

A require term is essentially just a let , as found in many programming
languages, with the assigned value provided by the type checker. This rule
is a bit bizarre, of course, because the proof term M does not appear in the
resulting proof term require x : A in N , but from a type-theoretic perspective
this is acceptable. In realizability-based type theories such as Computational
Type Theory (Allen, Bickford, Constable et al. 2005), information is routinely
forgotten from the premises of inference rules; this allows the formulation of
a polymorphic type theory containing very rich, extensional types including
subsets and unions. On the other hand, this means that the terms of the theory
may no longer be checked against their types, since the typing judgment is
synthetic and not analytic (i.e. the evidence for its validity is not contained
in the judgment itself). As such, it becomes necessary to consider terms as
the computational content of a proposition’s proof, which is justified by a
derivation in the metalanguage.

It should also be noted that require will in general be a non-deterministic
rule, unlike the other inference rules. This is because there could be many
solutions for the presupposition.

We can now provide a true semantics for pronouns and definite determiners:

JheK = require x : E in x

JitK = require x : E in x

JtheK = λP. require x : E in (require p : P x in x)

Now let us reconsider our examples with the new semantics:

JA man walked in. He sat down.K
= (p : (x : E)×Man x×WalkedIn x)× SatDown(require y : E in y)

JA man walked in. The man (then) sat down.K
= (p : (x : E)×Man x×WalkedIn x)

× SatDown (require y : E in (require q : Man y in y))

JIf a farmer owns a donkey, he beats it.K
= (p : (x : E)× Farmer x× (y : E)×Donkey y ×Owns x y)

→ Beats (require z : E in z) (require w : E in w)

JEvery farmer who owns a donkey beats it.K
= (p : (x : E)× Farmer x× (y : E)×Donkey y ×Owns x y)

→ Beats p1 (require w : E in w)

All that remains is to define how to extract a final proof term without the
use of require terms.

3.2 Extraction

To get the final propositions, we will define a meta-operation extr(D) which
transforms a derivation D :: Γ ` M : A into an extracted term M ′ which is

10 Darryl McAdams, Jonathan Sterling

like M but without require terms, and instead with solutions in place of their
bound variables. We define the operation inductively over the structure of the
derivation as follows:

extr
(

const
Γ `Σ x : A

)
 x

extr
(

hyp
Γ `Σ x : A

)
 x

extr
(

Set : Set
Γ `Σ Set : Set

)
 Set

extr

 D
Γ `Σ A : Set

E
Γ, x : A `Σ B : Set

→F
Γ `Σ (x : A)→ B : Set

 (x : extr(D))→ extr(E)

extr

 D
Γ, x : A `Σ M : B

→I
Γ `Σ λx.B : (x : A)→ B

 λx.extr(D)

extr

 D
Γ `Σ M : (x : A)→ B

E
Γ `Σ N : A

→E
Γ `Σ M N : [N/x]B

 extr(D) extr(E)

extr

 D
Γ `Σ A : Set

E
Γ, x : A `Σ B : Set

×F
Γ `Σ (x : A)×B : Set

 (x : extr(D))× extr(E)

extr

 D
Γ `Σ M : A

E
Γ `Σ N : [M/x]B

×I
Γ `Σ 〈M,N〉 : (x : A)×B

 〈extr(D) ,extr(E)〉

extr

 D
Γ `Σ P : (x : A)×B

×E1
Γ `Σ fst(P) : A

 fst(extr(D))

extr

 D
Γ `Σ P : (x : A)×B

×E2
Γ `Σ snd(P) : [fst(P)/x]B

 snd(extr(D))

extr

 D
Γ `Σ M : A

E
Γ `Σ [M/x]N : B

require
Γ `Σ require x : A in M : B

 extr(E)

The most crucial rule is the last one — the preceding ones simply define
extraction by induction on the structure of terms other than require terms. For
a require term, however, we extract substituting the proof of the presupposed
content for the variable in the body of the require term.

It is evident that the extraction process preserves type.

Theorem 1 Given a derivation D :: Γ `Σ M : A, there exists another deriva-
tion D′ :: Γ `Σ extr(D) : A.

Proof By straightforward induction on the structure of D.

Dependent Types for Pragmatics 11

An example of extraction in action is necessary, so consider again the sen-
tence “A man walked in. He sat down.” Pre-extraction, the meaning of this
will be:

(p : (x : E)×Man x×WalkedIn x)× SatDown(require x : E in x)

Now let Σ = Man : E → Set,WalkedIn : E → Set,SatDown : E → Set. After
constructing a derivation that the above type is a Set under the signature Σ,
we can extract the associated term. The left conjunct extracts to itself, so
we will not look at that, but the extraction for the right conjunct is more
interesting. The derivation for the right conjunct, letting Γ = p : (x : E) ×
Man x×WalkedIn x, is:

const
Γ `Σ SatDown : E→ Set

hyp
Γ `Σ p : (x : E)×Man x×WalkedIn x

×E1
Γ `Σ fst(p) : E

D
Γ `Σ fst(p) : E

require
Γ `Σ require x : E in x : E

→E
Γ `Σ SatDown(require x : E in x) : Set

Inductively, we get:

extr
(

const
Γ `Σ SatDown : E→ Set

)
 SatDown

extr

(
D

Γ `Σ fst(p) : E

)
 fst(p)

For the require term’s extraction, we substitute fst(p) in for x in x to get the
following:

extr


hyp

Γ `Σ p : (x : E)×Man x×WalkedIn x
×E1

Γ `Σ fst(p) : E
D

Γ `Σ fst(p) : E
require

Γ `Σ require x : E in x : E

 fst(p)

And finally the extraction of whole subderivation yields SatDown(fst(p)), and
so the complete derivation yields

(p : (x : E)×Man x×WalkedIn x)× SatDown(fst(p))

which is the meaning we had wanted.
A similar proof for “A man walked in. The man (then) sat down.” can be

given, with an extra non-trivial branch for Man(fst(p)). Focusing just on the
subproof for the man, we have the typing derivation

E
Γ `Σ fst(p) : E

hyp
Γ `Σ p : (x : E)×Man x×WalkedIn x

×E2
Γ `Σ snd(p) : Man(fst(p))×WalkedIn(fst(p))

×E1
Γ `Σ fst(snd(p)) : Man(fst(p))

E
Γ `Σ fst(p) : E

require
Γ `Σ require q : Man(fst(p)) in fst(p) : E

require
Γ `Σ require x : E in (require q : Man x in x)) : E

12 Darryl McAdams, Jonathan Sterling

This similarly extracts to fst(p) just as the subproof for he did before.
Extraction for “If a farmer owns a donkey, he beats it.” and “Every farmer

who owns a donkey beats it.” unfolds in a similar fashion, with the extraction of
the antecedent (x : E)×Farmer x×(y : E)×Donkey y×Owns x y being trivial.
The consequent Beats (require z : E in z) (require w : E in w) breaks down into
three subproofs, one for the predicate Beats which extracts trivially, and the
two require subproofs which extract like the previous pronominal examples.
The only difference now being that the context has more options for the proofs.

Keen eyes will notice, however, that there should be four solutions, because
both require terms require something of type E — the words he and it have no
gender distinction in the semantics. This is left as an unspecified part of the
framework, as there are a number of options for resolving gender constraints.
Two options that are immediately obvious are 1) make E itself a primitive
function E : Gender → Set and then specify a gender appropriately, or 2) add
another require term so that, for example, JheK = require x : E in (require p :
Masc x in x) and provide appropriate axioms (possibly simply by deferring
to other cognitive systems for judging gender). The former solution is akin
to how certain versions of HPSG treat gender as a property of indices not of
syntactic elements.

4 Discussion

In the previous sections, we have described an approach to pronominal and
presuppositional pragmatics based on dependent types, as an alternative to
DRT and Dynamic Semantics. The main difference from a standard depen-
dently typed λ calculus is the addition of require terms, an extraction process
to eliminate require terms. Like DRT, the dependent approach relies on an in-
tensional, “syntactic” semantics, in the form of proof terms. For proponents of
a more direct system, which can produce denotations without an intermediate
intensional system, that sort of semantics is undesirable, but research exists
into type theoretical approaches to metavariables using modal type theories
which may be able to give a clean denotational interpretation to require terms,
such as Nanevski, Pfenning & Pientka (2008).

A modal extension can also provide an interesting solution to another well-
known problem in pragmatics. Consider the sentence “John will pull the rabbit
out of the hat” when said of a scene that has 3 rabbits, 3 hats, but only a
single rabbit in a hat. This sentence seems to be pragmatically acceptable and
unambiguous, despite there being neither a unique rabbit nor a unique hat.
In the framework given above, there should be 9 possible ways of resolving
the presuppositions, leading to pragmatic ambiguity. A simple modality (ap-
proximately a possibility modality), however, can make sense of this: if the
assertion of such a sentence presupposes that the sentence can be true via a
modality (i.e. to assert P is to presuppose �P), then there is only one way
to solve the rabbit and hat presuppositions which will also make it possible
to resolve the possibility presupposition — pick the rabbit that is in a hat,

Dependent Types for Pragmatics 13

and the hat that the rabbit is in — yielding a unique, unambiguous meaning.
Whether this belongs in the semantics-pragmatics or in some higher system
(such as a Gricean pragmatics) is debatable, but that such a simple solution
is readily forthcoming at all speaks to the power of the above framework.

References

1. Allen, S.F., Bickford, M., Constable, R.L., Eaton, R., Kreitz, C., Lorigo, L., Moran,
& E. (2005). Innovations in computational type theory using Nuprl. Journal of Applied
Logic, 4(4).

2. Devriese, D., & Piessens, F. (2011). On the bright side of type classes: instance arguments
in Agda. Proceedings of the 16th ACM SIGPLAN International Conference on Functional
Programming.

3. Harper, R., Honsell, F., & Plotkin, G. (1993). A framework for defining logics. Journal
of the ACM, 40(1).

4. Hurkens, A. (1995). A Simplification of Girard’s Paradox. Proceedings of the Second
International Conference on Typed Lambda Calculi and Applications.

5. Marlow, S. (2010). Haskell 2010 Language Report.
6. Martin-Löf, P. (1984). Intuitionistic Type Theory. Bibliopolis, Napoli.
7. Nanevski, A., Pfenning, F., & Pientka, B. (2008). Contextual modal type theory. Trans-
actions on Computational Logic, 9(3).

